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ABSTRACT: This paper focuses on analysing the advantages and disadvantages of using stochastic optimiza-
tion, especially in aircraft design problems. First, a literature review served as a starting point to choosing some
of the most common and promising methods of robust design optimization, reliability based design optimiza-
tion and robust and reliability based design optimization. The chosen methods were Monte Carlo, method of
moments, Sigma point, reliability index approach, performance measure approach, sequential optimization and
reliability assessment, and reliable design space. After implementing these methods, they were were firstly tested
using an analytical function and their performances compared. Four of these methods were then chosen to be
implemented in a multidisciplinary optimization tool specially tailored to solve aircraft optimization problems.
To evaluate the chosen methods in a more realistic environment, two new reliability based test cases related to
aircraft design were developed. In these test cases, surrogate models were employed instead of the more compu-
tationally expensive disciplinary analysis, with the main objective being the study of how the efficiency of each
method changed with the number of uncertainty parameters. The obtained results revealed that the efficiency of
each method is closely related to the type of problem solved. While in the analytical case, for high levels of uncer-
tainty, the robust optimization method showed some difficulties in achieving the target reliability, in the aircraft
design cases, it proved to be the best method in terms of the relation between accuracy and computational cost.

1 INTRODUCTION

As competitiveness in the aerospace industry
increases, so does the need to come up with novel con-
figurations of aircraft that are more robust, in that they
are still able to perform well in off design conditions,
as well as reliable in the sense that they have a low
probability of failure. This is where both uncertainty
quantification (UQ) and uncertainty-based optimiza-
tion comes into play. Even though deterministic opti-
mization methods have proven useful during nearly six
decades of design, they have several shortcomings,
especially when it comes to accounting for uncer-
tainty by means of a combination of safety factors and
knockdown factors (whose values have been obtained
through years of experience for standard configura-
tions and materials). Furthermore, since the measures
of both robustness and reliability are not provided in
the deterministic design process, it is impossible to
both determine the relative importance that the design
options have in these measures, and maintain con-
sistency in terms of reliability throughout the whole
vehicle (Zang et al. 2002).

Since uncertainty is present in everything, it is of
the utmost importance to take it into account when
studying any phenomenon, for this might lead to some
unexpected results. Before that, it is first necessary
to characterize and quantify uncertainty. There are
a couple of methods to do this, but since the ones

that are based on the probability density function
(PDF) provide the most detailed results, these are
usually the ones used in the aircraft design phases.
Throughout this work, these were the chosen meth-
ods, turning the uncertainty-based optimization into
stochastic optimization.

There are two major classes of uncertainty-based
optimization methods, robust design optimization
(RDO) and reliability based design optimization
(RBDO). While robust optimization seeks a design
insensitive to small changes in the uncertain quanti-
ties, the design sought by reliability optimization is
one that has a probability of failure that is less than
some acceptable value. In order to achieve these differ-
ent designs, not only their mathematical formulation
is different, but also their domains of applicability.
Besides these two classes, a formulation called Robust
and Reliability Based Design Optimization (R?BDO),
which focuses on obtaining designs that are both robust
and reliable (Paiva 2010), is also taken into account in
this study.

This paper describes some of the different meth-
ods that were proposed for each of the stochas-
tic optimization formulations and presents their
results for different test cases. These results are
then compared and conclusions are drawn as to
which are the best methods and what benefits
does stochastic optimization has over deterministic
optimization.

267



2 ROBUST AND RELIABLE DESIGN

Accounting for uncertainty in design optimization
implies solving a slightly modified version of the
deterministic optimization problem. These modifica-
tions are made according to the stochastic optimization
formulation that is being employed, be it RDO, RBDO
or R?BDO.

2.1  Deterministic optimization

In a deterministic design optimization, the designer
seeks the optimum set of design variable values for
which the objective function is the minimum and the
deterministic constraints are satisfied (Agarwal 2004).
A common way to formulate such a problem is (Marta
2013)

min  f(z) ey

T

s.t. gi(z) <0,1=1,2,..., Ny,

where f* is the objective function, x is the vector of
design variables, which can or cannot be restricted
to a certain interval by means of xi® <x; <x!%,
k=1,2,..., Npy where LB and UB are the lower and

upper bounds of the design space respectively.

2.2 Robust design optimization

The robust attribute of the design is achieved by simul-
taneously minimizing the variance (af) and expected
value (1r) of the objective function, while ensuring
probabilistic satisfaction of the constraints. Probabilis-
tic bounds can also be set for the independent variables
(Padulo et al. 2008). The final result is the following
statement:

min F(ug(z,r),0p(z,7))

s.t. Gi(pg; (z,7),04,(2,7)) <0, i=1,2,...,Ng
P(xﬁB <z < ng) 2)
2 Pbound37 k= 1>27 "~7NDV7

where p and o represent the mean and standard devi-
ation of either the objective function or the constraint
functions (depending on their subscript), and » is a
vector of parameters that may or may not be deter-
ministic. The robust objective and constraints are now
designated by capital letters (/" and G respectively),
since in RDO they depend on their mean and standard
deviation, which in turn depend on the probabilistic
distribution of the variables. In Eq. (2), P stands for
the probability of the input variables residing within
their bounds.

2.3 Reliability based design optimization

A typical RBDO formulation involves the minimiza-
tion of an objective function subject to reliability
constraints and deterministic constraints. Its equiva-
lent to Eq.(2) can be mathematically represented by
(Padmanabhan et al. 2006) (Frangopol and Maute
2003)

min f(z,r)
x
s.t. 9r(z,r) <0,i=1,2,..., Ny 3)
gi(@,r) <0, =1,2,..., Ny
xﬁB <z < kaB k=1,2,..., Npv,

where g/ and g¢ are respectively the reliability and
deterministic constraints. The reliability constraint is
defined as

g;c = Pfi - Pallowi = P(gz(7:7) > 0) - Pallowi s (4)

where P, is the probability of failure and Py, is the
allowable value for the probability of failure.

2.4 Robust and reliability based design
optimization

This formulation was proposed to overcome some of
the RDO and RBDO shortcomings. In an attempt
to bring together the best of both formulations,
R?BDO comprises RDO objective function treatment
and RBDO constraint treatment in a single problem
statement, resulting in

min  F(uy(z,r),0p(z,7))

u
s.t. 9r(z,r) <0,i=1,2,..., Ny ©)
gi(@,r) <0, =1,2,..., Ny

J“ﬁB Sxk S -TIkJB k= 1’23"'7NDV'

3 STOCHASTIC OPTIMIZATION METHODS

Because the different formulations focus on different
zones of the PDF, the methods they use are also dif-
ferent. While in RDO the methods try to approximate
the probabilistic measures of the objective and con-
straint functions (¢ and o), in the RBDO methods the
objective is to compute the probabilities of failure.

3.1 RDO methods

3.1.1 Monte Carlo method (MC)

In RDO, the MC Method is a method which computes
both the mean and standard deviation of the objective
and constraint function based on N random samples,
for each of the random variables. The accuracy of this
method is tied to the number of samples N that are
generated. The higher this number is, the better the
results and the more costly the method becomes.

3.1.2  Taylor based Method of Moments (MM)

The idea behind MM is to approximate the distribu-
tion of a given function in terms of its derivatives by
using Taylor approximations of the statistical moments
(Menshikova 2010). By taking the Taylor expansion
of a function about its mean, applying the expectation
operator to it and assuming that all design variables
are independent and have symmetric distributions, the
mean of this function becomes

1%
/‘gzg(ﬂw)+52@aa}i “+ ... (6)
Yi=1 71

268



By squaring Eq.(6) and subtracting it from the
squared Taylor approximation of the same function,
the variance of the function can also be obtained.

3.1.3  Sigma Point method (SP)

This method is based on the idea that it is easier to
approximate the probabilistic distribution of the input
variables, rather than that of the target function (Padulo
et al. 2007). Assuming both symmetric and indepen-
dent input variables, the Sigma points are located
symmetrically about the mean of each of the inputs
depending on the input covariance matrix, as fol-
lows: xo = tx; Xiy = tx +hoe;; and xi— = pu, — hoe;,
where 4= ,/K(x), which for normally distributed

inputs equals v/3, o is the covariance matrix and ¢; is
the ith column of the identity matrix of size Ngy X Ngy .
The probabilistic parameters of the objective and
constraint functions are then computed by

Nrv

7 =Wof(xo) + > Wilf(xir) + f(xi-)] (7
i=1
—_ 1] Nrv
oF =5 2 (Wil Gxi) = FOa )P+ (Wem2w) -
i=1
[FOcr) + F(xim) = 2f (o))}
where the weights are W, = hz_hﬁf 2 and W; = 5.

3.2 RBDO methods

3.2.1 Monte Carlo method (MC)

In RBDO, the MC method can be used to generate
random numbers with a certain distribution, in order
to evaluate probabilities of failure. After generating
N samples of each of the random variables, they are
substituted into the function of interest to evaluate its
response. Based on this response, the probability of
the function being higher than a certain value can then
be computed.

3.2.2 First Order Reliability Method (FORM)
FORM basically consists of linearly approximating
the limit state surface g(k) =0, where 4 is a vector
of random variables and/or parameters, by means of
a first order Taylor expansion at the Most Probable
Point (MPP) of failure (this is the point where g(%) has
the highest probability of being zero) (Agarwal 2004).
After that, the corresponding probability of failure can
be approximated by

Pr; = P(g(h) 2 0) = ®(=p) = 1 - ®(8), ©)

where @ is the cumulative distribution function of the
standard normal distribution and B is the so called
reliability index. The reliability index is the distance
between the MPP and the origin of the standard normal
space u, and is given by g = (u” u)%. It can be found
by solving the following optimization sub-problem,

min  (u"u)?
U

sit.: g(h(u))=0,

(10)
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where u is the vector of random variables /4, trans-
formed into the standard normal space through
hy =T~ (uy) = u + ouy, (for normal distributed vari-
ables).

Atthis point, the reliability constraints of the RBDO
problem can be formulated in terms of their reliability
indexes instead of their probabilities. The mathemat-
ical expression for the reliability constraints should
now be transformed into the equivalent,

gfczﬁreqdfﬁi; (11

where B4 1s the required reliability index (that corre-
sponds to a given P,j,,,) and §; is the reliability index
ofthe current iterate. This approach to the RBDO prob-
lem is called the Reliability Index Approach (RIA). By
changing the optimization sub-problem of Eq.(10) to
its inverse (Tu et al. 1999):

min — g(h(u)) .

s.t. (uTu)% — Breqa =0

one obtains the Performance Measure Approach
(PMA) instead, also called inverse MPP.

Another way to formulate the PMA problem is to
confine the values of the vector u to a hyper-spherical
surface of radius Be,q, thus eliminating the neces-
sity for the equality constraint (uTu)% — Brega =0 in
Eq.(12) and reducing the dimension of the sub problem
to Ngy — 1 (Paiva 2010). This results in the following
statement:

min -~ g(h(u(6)) (13)

where ¢ is the set of hyper-spherical angular coordi-
nates ¢ = {¢1, D2y s PNy —1 } Considering the lack
of a constraint, plus the lower problem dimension, the
alternative formulation of the PMA ought to allow for
faster convergence.

3.2.3 Sequential Optimization and Reliability
Assessment (SORA)

SORA is an improved RBDO method that belongs to
a category called decoupled approaches. Instead of
doing the reliability assessment of Egs.(12) and (10)
for every iterate, it uses serial single loops to efficiently
optimize the objective function and assess its reliabil-
ity, thus reducing the computational cost associated
with RBDO (Du and Chen 2002).

SORA sequentially performs a series of determinis-
tic optimizations and reliability assessments. By com-
puting a shifting vector s at each cycle, SORA rapidly
approximates the deterministic constraint to the prob-
abilistic one. In the end, by ensuring the design point
satisfies all the deterministic constraints, SORA also
ensures that the probabilistic constraints are satisfied.

3.2.4 Reliable design space (RDS)

RDS (Shan and Wang 2008) is also an improved
RBDO method which reduces the computational costs
associated to it. By first converting its constraint into
a probabilistic one, it only needs to solve a single



deterministic optimization loop. Much like in SORA,
deterministic constraints are rewritten as a function of
the calculated MPP values, thus converting them into
theoretical probabilistic constraints g7. The difference
now is that to find the MPP, instead of solving an opti-
mization subproblem, the following approximation is
used:

Jg;/duy,
>, (0g:/O0ug)?

This way, it is possible to directly calculate the inverse
MPP x; at any design point jiy, .

Tk A iy, — BO, a4

4 ANALYTICAL TEST CASE

All the methods were tested using an analytical test
case and their results compared to each other. The
presented errors were computed with a post optimal
analysis using MC simulations with 6 x 10% samples.

The main goal was to provide information about
the efficiency of each method, in terms of required
function evaluations. In this test case, a rather sim-
ple objective function is used in conjunction with
three nonlinear constraints. Since the RBDO methods
presented use reliability indexes instead of reliabili-
ties, the constraints were adapted according to each
method’s own formulation. A target reliability index
(Breqa = 3) and a standard deviation of the random vari-
ables (0 =0.3) was chosen. Because this test case had
a target reliability, the RDO constraints were adapted
to mimic probabilistic constraints.

The results of this test case can be seen in Tab. 1.
In terms of the reliability error, it can be seen that,
while the RDO methods struggled to achieve the tar-
get reliability, both the RBDO and R?BDO were able
to achieve it, apparently without any major problems.
While all RBDO and R?BDO methods reached the
same solution, the RDO methods obtained different
ones (worse), for their reliability error was higher. In
terms of the number of required function evaluations,
it can be seen that both RDO methods are among the
ones that have the lowest number of function evalua-
tions, as they do not have reliability assessment cycles.
As for RBDO, the classic approaches PMA and RIA
are the methods that have the highest number of eval-
uations. After them, comes the alternative PMA, that
is indeed able to reduce the number of constraint eval-
uations. Both SORA and SORA_alt have even less
function evaluations, and finally comes RDS. It can
be seen that compared to the classic approached, both
SORA, SORA_alt and RDS greatly reduce the num-
ber of required function evaluation, apparently at no
cost, since the reliability errors remain low.

5 NUMERICAL TEST CASES

In order to be able to assess the performance of
stochastic optimization in an aircraft MDO environ-
ment, some of the previously introduced methods were
implemented in an MDO Framework (currently under
development at IST (Afonso et al. 2014)) and two test

&5

Figure 1. EMBO9MOR — Baseline model.

cases were devised. In the two test cases surrogate
models (Queipo et al. 2005) were employed, so that
many optimizations could be performed for different
levels of uncertainty. The choice of the methods to
be implemented was based on both their implemen-
tation complexity and performance in the analytical
test case. SP was chosen to perform RDO, PMA and
SORA for RBDO and for R?2BDO SP + SORA. The
aircraft model to be optimized was the EMBIMOR
(an aircraft reference model that was specially devel-
oped for the NOVEMOR project to assess morphing
benefits (Gaspari et al. 2014)), as illustrated in Fig. 1.

5.1 Test case I

This test cases consisted of maximizing the range of
the baseline model of the aircraft EMBIMOR for the
cruise flight phase. The design variables were some of
the operational conditions such as the angle of attack
«a, the airspeed V, altitude and throttle (both airspeed
and altitude were considered as being uncertain).

To be able to compare all of the implemented
methods, the devised problem had target reliabilities,
which meant that the RDO constraint was once again
converted into a probabilistic one. In this problem,
each optimization case was characterized by a unique
combination of three parameters, namely the level of
uncertainty (defined by c.0.v. =a/u), the number of
variables that have uncertainty (either only airspeed
or airspeed plus altitude) and the target reliability of
the optimization. In the end, the averages of both the
number of required function evaluations and reliabil-
ity errors were computed for each of the methods
and compared, as can be seen in Fig. 2. It was con-
cluded that the required number of function calls were
all in accordance to what has been seen in Tab. 1.
PMA was still the method that required the highest
number of calls. After came SP + SORA and SORA,
which clearly solve the problems with the reliabil-
ity assessment cycle by decoupling it from the main
optimization cycle, and finally came SP.

In erms of the reliability error, it has been seen that
the average error produced by these methods is low,
with SORA and SP + SORA having slightly higher
error than PMA and SP. The reason why this happens
for SORA and SORA + SP is because in a few cases,
their algorithm was not able to achieve the target reli-
ability, thus increasing their average. As for PMA and
SP, they were mostly on target during the whole test
case, producing really low errors. This was expected
from PMA, but not necessarily from SP. Even at higher
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Table 1. Comparison between different stochastic optimization methods.

RBDO RDO

R’BDO
Method RIA PMA PMA_alt SORA SORA_alt RDS MM SP SP + PMA_alt
Design Variables
i 34391 34391 34391 3.4391 3.4391 3.4406 3.6333 3.6291 3.4391
o 3.2866 3.2866 3.2866  3.2866 3.2866 3.2800 3.4442 3.4164 3.2866
Objective function 6.7257 6.7257  6.7257  6.7257 6.7257 6.7205 7.5017 7.46987 7.1499
Constraint Reliability
ep, [70] le] <2 le| <2 le] <2 le] <2 le] <2 le] <2 2541 24.50 le] <2
£p,[%0] le] <2 le| <2 le] <2 le] <2 le] <2 le]<2 11.01 8.39 le] <2
£p,[%] 00 00 00 00 00 00 00 00 o0
#Obj. func. eval 18 18 21 51 51 18 15* 75%* 105**
#Const. func. eval 1137 1956 688 367 234 54* 45* 225%* 688
#Total. func. eval 1155 1974 709 418 285 72* 60* 300** 709**

* the number of function evaluations required to determine partial derivatives, were not accounted for
+% the number of necessary function calls within the main function evaluations, were taken into account

0 0s 1 15 2

1,69%
‘ 0,04%

0,07% SORA
uPMA

B = usp

2324 Average number of calls

33762
1595

o 5000 10000 15000 20000 25000 30000 35000 40000

Reliability Error (%) W SP+SORA

Figure 2. Average of the reliability error and number of
calls.

Table 2. Winglet comparison.

Five design variables were used, of which two
concerned relative thicknesses of the aerodynamic
surfaces and three concerned winglet angles. The
objective function consisted of a similar equation to
the one used in the previous numerical test case, with
a few differences to account for the different variables
that were used. Finally, only one maximum allowable
stress constraint was used. It is important to note that in
the deterministic optimization problems the constraint
accounted for uncertainty by means of a safety factor.

Like in the previous test case, the optimizations
were performed using different combinations of uncer-
tainty parameters, with the difference that this time, the

Config 5 Config 6 number of random variables were either two (both rel-
) ative thicknesses) or five (all random variables). Once
DET ObJ/ 223}736 04 ggg? 04 again, in the end, both the average of required func-
:‘s"/’tc R 747E—03 R 850E_03  tion evaluations and reliability errors were obtained

weight 7.297E+05 7.300E+05  for each of the methods and compared to each other.
PMA obi 5.9967 59954 In terms of function evaluations, it has been seen
twic 5.40E—04 5.40E—04 that for this specific problem, everything is still in
c.ov.5% ts/t 6.379E—03 6.565E—03  accordance with the previous test cases, with PMA
weight 7.244E+05 7.248E+05  being the method that requires the most evaluations,

B 3.0036 3.0032 then SP 4+ SORA, after that SORA and finally SP.

PMA obj 5.9809 5.9792 As for reliability, things got a little bit different. All
tw/c 5.40E—04 S40E—04  the methods but PMA have had their errors increased
c.0.v. 8% ts/t " ;;2?5_82 ;ggég_gg in a similar fashion. That is normal considering the
:;Velg 29818 + 2,976 + higher number of uncertainty variables present in this

levels of uncertainty the SP method maintained consis-
tency, which is something really interesting consider-
ing the low number of function evaluations it requires,
especially compared to the other stochastic methods.

5.2 Testcase 2

In this test case, the aircraft model consisted of
the baseline + winglet instead of just the baseline
model like in test case 1. While the focus of this
test case remained mostly unchanged when compared
to the previous one, it went a little bit further in
order to provide information regarding the benefits
that stochastic optimization has over deterministic
optimization.
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problem, compared to the previous. The only thing
that is not normal is the fact that PMA became the
method with the highest reliability error. This can
only be explained by the fact that PMA solely relies
on the MPP problem to find the target reliability.
Because some of the stochastic variables do not nec-
essarily influence the reliability of the aircraft (they
are not responsible for failures), but are still used
for the reliability assessment of the PMA method,
an error can be induced. PMA is usually able to
deal with these problems, but since surrogate models
were employed and some of the variables are usually
close to their bounds, numerical errors occur that may
lead to incorrect data regarding the influence of these
variables. While both SORA and SP + SORA suffer
from the same problem, they do not rely as much in



this reliability assessment as PMA does, which results
in a lower error.

As previously stated, this test case went a little bit
further to study the differences between stochastic and
deterministic optimization. To do that, nine config-
urations of winglets (with different combinations of
span and tip chord) were optimized, both determin-
istically and stochastically and and their results were
compared. In this optimization the objective function
and constraints were kept the same but the design vari-
ables were only the thicknesses (the winglet angles
were fixed for maximum C;/Cp). The most relevant
results concern configurations 5 and 6 and can be seen
in Tab. 2. The first thing that can be noticed is the fact
that the deterministic optimization has lower values of
the objective function. This is because it uses a safety
factor to account for uncertainties. Even though the
difference may not always be this big if all the uncer-
tainties are properly quantified (which was not the
case), this just proves that deterministic optimization is
often more conservative than stochastic optimization.
Another thing that is really important to note is the fact
that as the shift from deterministic to stochastic opti-
mization is made, not only the results get better, but
also the best configuration changes. In the determinis-
tic optimization, it was found that configuration 6 was
the best, but as uncertainty is introduced and further
increased, configuration 5 becomes better. This shows
just how much potential stochastic optimization has,
when it comes to analyzing new aircraft configurations
that may not have the best results if only deterministic
optimization is used.

6 CONCLUSIONS

The efficiency of each method is tied to the problem
being solved. There is no such thing as the best method
or best formulation, since every method and formula-
tion performed poorly in at least one test case. Despite
all that, the method that stood out the most was SP,
by being able to accurately achi eve the reliability tar-
get, at reasonable cost. Its robust formulation did not
allow it to be the best method in the analytical test
case but in the end, it proved to be more than capable
to solve simpler problem, thus confirming why robust
optimization is still widely used when uncertainties
are taken into account.

It was also seen that stochastic optimization has
some advantages over deterministic optimization. Not
only stochastic optimization proved to be less conser-
vative (while still having the target reliabilities), but it
also demonstrated its potential when it comes to find-
ing new and more efficient aircraft configurations. It
should be noticed that, because the uncertainties were
not properly quantified, the comparisons were only
qualitative.
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